. Das, Sankar; Kanamoto, Taisei; Ge, Xiuchun; Xu, Ping; Unoki, Takeshi; Munro, Cindy L; Kitten, Todd 2009-07-01 Streptococcus sanguinis is an important cause of infective endocarditis. Previous studies have identified lipoproteins as virulence determinants in other streptococcal species. Using a bioinformatic approach, we identified 52 putative lipoprotein genes in S. Sanguinis strain SK36 as well as genes encoding the lipoprotein-processing enzymes prolipoprotein diacylglyceryl transferase (lgt) and signal peptidase II (lspA).
We employed a directed signature-tagged mutagenesis approach to systematically disrupt these genes and screen each mutant for the loss of virulence in an animal model of endocarditis. All mutants were viable. In competitive index assays, mutation of a putative phosphate transporter reduced in vivo competitiveness by 14-fold but also reduced in vitro viability by more than 20-fold.
Mutations in lgt, lspA, or an uncharacterized lipoprotein gene reduced competitiveness by two- to threefold in the animal model and in broth culture. Mutation of ssaB, encoding a putative metal transporter, produced a similar effect in culture but reduced in vivo competiveness by 1,000-fold. (3)Hpalmitate labeling and Western blot analysis confirmed that the lgt mutant failed to acylate lipoproteins, that the lspA mutant had a general defect in lipoprotein cleavage, and that SsaB was processed differently in both mutants. These results indicate that the loss of a single lipoprotein, SsaB, dramatically reduces endocarditis virulence, whereas the loss of most other lipoproteins or of normal lipoprotein processing has no more than a minor effect on virulence. Das, Sankar; Kanamoto, Taisei; Ge, Xiuchun; Xu, Ping; Unoki, Takeshi; Munro, Cindy L.; Kitten, Todd 2009-01-01 Streptococcus sanguinis is an important cause of infective endocarditis.
Previous studies have identified lipoproteins as virulence determinants in other streptococcal species. Using a bioinformatic approach, we identified 52 putative lipoprotein genes in S. Sanguinis strain SK36 as well as genes encoding the lipoprotein-processing enzymes prolipoprotein diacylglyceryl transferase (lgt) and signal peptidase II (lspA). We employed a directed signature-tagged mutagenesis approach to systematically disrupt these genes and screen each mutant for the loss of virulence in an animal model of endocarditis. All mutants were viable.
In competitive index assays, mutation of a putative phosphate transporter reduced in vivo competitiveness by 14-fold but also reduced in vitro viability by more than 20-fold. Mutations in lgt, lspA, or an uncharacterized lipoprotein gene reduced competitiveness by two- to threefold in the animal model and in broth culture. Mutation of ssaB, encoding a putative metal transporter, produced a similar effect in culture but reduced in vivo competiveness by 1,000-fold. 3Hpalmitate labeling and Western blot analysis confirmed that the lgt mutant failed to acylate lipoproteins, that the lspA mutant had a general defect in lipoprotein cleavage, and that SsaB was processed differently in both mutants. These results indicate that the loss of a single lipoprotein, SsaB, dramatically reduces endocarditis virulence, whereas the loss of most other lipoproteins or of normal lipoprotein processing has no more than a minor effect on virulence.
PMID:19395487. Gryllos, Ioannis; Tran-Winkler, Hien J; Cheng, Ming-Fang; Chung, Hachung; Bolcome, Robert; Lu, Wuyuan; Lehrer, Robert I; Wessels, Michael R 2008-10-28 Group A streptococci ( Streptococcus pyogenes or GAS) freshly isolated from individuals with streptococcal sore throat or invasive ('flesh-eating') infection often grow as mucoid colonies on primary culture but lose this colony appearance after laboratory passage. The mucoid phenotype is due to abundant production of the hyaluronic acid capsular polysaccharide, a key virulence determinant associated with severe GAS infections. These observations suggest that signal(s) from the human host trigger increased production of capsule and perhaps other virulence factors during infection.
Here we show that subinhibitory concentrations of the human antimicrobial cathelicidin peptide LL-37 stimulate expression of the GAS capsule synthesis operon (hasABC). Up-regulation is mediated by the CsrRS 2-component regulatory system: it requires a functional CsrS sensor protein and can be antagonized by increased extracellular Mg(2+), the other identified environmental signal for CsrS. Up-regulation was also evident for other CsrRS-regulated virulence genes, including the IL-8 protease PrtS/ScpC and the integrin-like/IgG protease Mac/IdeS, findings that suggest a coordinated GAS virulence response elicited by this antimicrobial immune effector peptide. LL-37 signaling through CsrRS led to a marked increase in GAS resistance to opsonophagocytic killing by human leukocytes, an in vitro measure of enhanced GAS virulence, consistent with increased expression of the antiphagocytic capsular polysaccharide and Mac/IdeS. We propose that the human cathelicidin LL-37 has the paradoxical effect of stimulating CsrRS-regulated virulence gene expression, thereby enhancing GAS pathogenicity during infection.
The ability of GAS to sense and respond to LL-37 may explain, at least in part, the unique susceptibility of the human species to streptococcal infection. Fan, Jingyuan; Zhang, Yongshu; Chuang-Smith, Olivia N; Frank, Kristi L; Guenther, Brian D; Kern, Marissa; Schlievert, Patrick M; Herzberg, Mark C 2012-01-01 Streptococcus sanguinis is the most common cause of infective endocarditis (IE). Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S.
Sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-5'-nucleotidase (Nt5e), as a candidate virulence factor. By colorimetric phosphate assay, we showed that S.
Sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, a nt5e deletion mutant showed significantly shorter lag time (P100 kDa) of the MSCRAMM family (microbial surface components recognizing adhesive matrix molecules) are key players in interactions with host tissue.
In this study, we identified a novel opacity factor of S. Suis (OFS) with structural homology to members of the MSCRAMM family. The N-terminal region of OFS is homologous to the respective regions of fibronectin-binding protein A (FnBA) of Streptococcus dysgalactiae and the serum opacity factor (SOF) of Streptococcus pyogenes. Similar to these two proteins, the N-terminal domain of OFS opacified horse serum. Serum opacification activity was detectable in sodium dodecyl sulfate extracts of wild-type S.
Suis but not in extracts of isogenic ofs knockout mutants. Heterologous expression of OFS in Lactococcus lactis demonstrated that a high level of expression of OFS is sufficient to provide surface-associated serum opacification activity. Furthermore, serum opacification could be inhibited by an antiserum against recombinant OFS. The C-terminal repetitive sequence elements of OFS differed significantly from the respective repeat regions of FnBA and SOF as well as from the consensus sequence of the fibronectin-binding repeats of MSCRAMMs. Accordingly, fibronectin binding was not detectable in recombinant OFS. To investigate the putative function of OFS in the pathogenesis of invasive S. Suis diseases, piglets were experimentally infected with an isogenic mutant strain in which the ofs gene had been knocked out by an in-frame deletion.
The mutant was severely attenuated in virulence but not in colonization, demonstrating that OFS represents a novel virulence determinant of S. PMID:17057090. Velikova, Nadya; Kavanagh, Kevin; Wells, Jerry M 2016-12-15 Streptococcus suis is an encapsulated Gram-positive bacterium and the leading cause of sepsis and meningitis in young pigs, resulting in considerable economic losses in the porcine industry.
Suis is considered an emerging zoonotic agent with increasing numbers of human cases over the last years. In the environment, both avirulent and virulent strains occur in pigs, with no evidence for consistent adapatation of virulent strains to the human host. Currently, there is an urgent need for a convenient, reliable and standardised animal model to rapidly assess S.
Suis virulence. Wax moth (Galleria mellonella) larvae have successfully been used in human and animal infectious disease studies. Here, we developed G. Mellonella larvae as a model to assess virulence of S. Suis strains.
Fourteen isolates of S. Suis belonging to different serotypes killed G. Mellonella larvae in a dose-dependent manner.
Larvae infected with the virulent serotype 2 strain, S. Suis S3881/S10, were rescued by antibiotic therapy. Crucially, the observed virulence of the different serotypes and mutants was in agreement with virulence observed in piglets (Sus scrofa) and the zebrafish larval infection model. Infection with heat-inactivated bacteria or bacteria-free culture supernatants showed that in most cases live bacteria are needed to cause mortality in G. Mellonella model is simple, cost-efficient, and raises less ethical issues than experiments on vertebrates and reduces infrastructure requirements.
Furthermore, it allows experiments to be performed at the host temperature (37 °C). The results reported here, indicate that the G. Mellonella model may aid our understanding of veterinary microbial pathogens such as the emerging zoonotic pathogen S.
Suis and generate hypotheses for testing in the target animal host. Ultimately, this might lead to the timely introduction of new effective remedies for infectious diseases.
Last but not least, use of the G. Mellonella. Turner, Lauren Senty; Das, Sankar; Kanamoto, Taisei; Munro, Cindy L; Kitten, Todd 2009-08-01 Completion of the genome sequence of Streptococcus sanguinis SK36 necessitates tools for further characterization of this species.
It is often desirable to insert antibiotic resistance markers and other exogenous genes into the chromosome; therefore, we sought to identify a chromosomal site for ectopic expression of foreign genes, and to verify that insertion into this site did not affect important cellular phenotypes. We designed three plasmid constructs for insertion of erm, aad9 or tetM resistance determinants into a genomic region encoding only a small (65 aa) hypothetical protein.
To determine whether this insertion affected important cellular properties, SK36 and its erythromycin-resistant derivative, JFP36, were compared for: (i) growth in vitro, (ii) genetic competence, (iii) biofilm formation and (iv) virulence for endocarditis in the rabbit model of infective endocarditis (IE). The spectinomycin-resistant strain, JFP56, and tetracycline-resistant strain, JFP76, were also tested for virulence in vivo. Insertion of erm did not affect growth, competence or biofilm development of JFP36. Recovery of bacteria from heart valves of co-inoculated rabbits was similar to wild-type for JFP36, JFP56 and JFP76, indicating that IE virulence was not significantly affected.
The capacity for mutant complementation in vivo was explored in an avirulent ssaB mutant background. Expression of ssaB from its predicted promoter in the target region restored IE virulence. Thus, the chromosomal site utilized is a good candidate for further manipulations of S. In addition, the resistant strains developed may be further applied as controls to facilitate screening for virulence factors in vivo. Senty Turner, Lauren; Das, Sankar; Kanamoto, Taisei; Munro, Cindy L.; Kitten, Todd 2009-01-01 Completion of the genome sequence of Streptococcus sanguinis SK36 necessitates tools for further characterization of this species. It is often desirable to insert antibiotic resistance markers and other exogenous genes into the chromosome; therefore, we sought to identify a chromosomal site for ectopic expression of foreign genes, and to verify that insertion into this site did not affect important cellular phenotypes. We designed three plasmid constructs for insertion of erm, aad9 or tetM resistance determinants into a genomic region encoding only a small (65 aa) hypothetical protein.
To determine whether this insertion affected important cellular properties, SK36 and its erythromycin-resistant derivative, JFP36, were compared for: (i) growth in vitro, (ii) genetic competence, (iii) biofilm formation and (iv) virulence for endocarditis in the rabbit model of infective endocarditis (IE). The spectinomycin-resistant strain, JFP56, and tetracycline-resistant strain, JFP76, were also tested for virulence in vivo. Insertion of erm did not affect growth, competence or biofilm development of JFP36. Recovery of bacteria from heart valves of co-inoculated rabbits was similar to wild-type for JFP36, JFP56 and JFP76, indicating that IE virulence was not significantly affected. The capacity for mutant complementation in vivo was explored in an avirulent ssaB mutant background. Expression of ssaB from its predicted promoter in the target region restored IE virulence.
Thus, the chromosomal site utilized is a good candidate for further manipulations of S. In addition, the resistant strains developed may be further applied as controls to facilitate screening for virulence factors in vivo. PMID:19423626. Wu, Tao; Zhao, Zhanqin; Zhang, Lin; Ma, Hongwei; Lu, Ka; Ren, Wen; Liu, Zhengya; Chang, Haitao; Bei, Weicheng; Qiu, Yinsheng; Chen, Huanchun 2011-01-01 Streptococcus suis serotype 2 is an important zoonotic pathogen that causes serious diseases such as meningitis, septicemia, endocarditis, arthritis and septic shock in pigs and humans.
Little is known about the regulation of virulence gene expression in S. Suis serotype 2. In this study, we cloned and deleted the entire tig gene from the chromosome of S. Suis serotype 2 SC21 strain, and constructed a mutant strain (Δtig) and a complementation strain (CΔtig). The results demonstrated that the tig gene, encoding trigger factor from S.
Suis serotype 2 SC21, affects the stress tolerance and the expression of a few virulence genes of S. Suis serotype 2. Deletion of the tig gene of S.
Suis serotype 2 resulted in mutant strain, ΔTig, which exhibited a significant decrease in adherence to cell line HEp-2, and lacked hemolytic activity. Tig deficiency diminishes stresses tolerance of S. Suis serotype 2 such as survive thermal, oxidative and acid stresses. Quantification of expression levels of known S.
Suis serotype 2 SC21 virulence genes by real-time polymerase chain reaction in vitro revealed that trigger factor influences the expression of epf, cps, adh, rpob, fbps, hyl, sly, mrp and hrcA virulence-associated genes. ΔTig was shown to be attenuated in a LD50 assay and bacteriology, indicating that trigger factor plays an important part in the pathogenesis and stress tolerance of. Suis serotype 2 infection. Mutant ΔTig was 100% defective in virulence in CD1 mice at up to 107 CFU, and provided 100% protection when challenged with 107 CFU of the SC21 strain. Copyright © 2010. Published by Elsevier India Pvt Ltd.
Jiang, Sheng-Mei; Cieslewicz, Michael J; Kasper, Dennis L; Wessels, Michael R 2005-02-01 Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS.
We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type.
Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis. Kovacs, C J; Faustoferri, R C; Quivey, R G 2017-12-15 Bacterial cell wall dynamics have been implicated as important determinants of cellular physiology, stress tolerance, and virulence. In Streptococcus mutans, the cell wall is composed primarily of a rhamnose-glucose polysaccharide (RGP) linked to the peptidoglycan. Despite extensive studies describing its formation and composition, the potential roles for RGP in S. Mutans biology have not been well investigated. The present study characterizes the impact of RGP disruption as a result of the deletion of rgpF, the gene encoding a rhamnosyltransferase involved in the construction of the core polyrhamnose backbone of RGP. The Δ rgpF mutant strain displayed an overall reduced fitness compared to the wild type, with heightened sensitivities to various stress-inducing culture conditions and an inability to tolerate acid challenge.
The loss of rgpF caused a perturbation of membrane-associated functions known to be critical for aciduricity, a hallmark of S. Mutans acid tolerance. The proton gradient across the membrane was disrupted, and the Δ rgpF mutant strain was unable to induce activity of the F 1 F o ATPase in cultures grown under low-pH conditions. Further, the virulence potential of S. Mutans was also drastically reduced following the deletion of rgpF The Δ rgpF mutant strain produced significantly less robust biofilms, indicating an impairment in its ability to adhere to hydroxyapatite surfaces.
Additionally, the Δ rgpF mutant lost competitive fitness against oral peroxigenic streptococci, and it displayed significantly attenuated virulence in an in vivo Galleria mellonella infection model. Collectively, these results highlight a critical function of the RGP in the maintenance of overall stress tolerance and virulence traits in S. Mutans IMPORTANCE The cell wall of Streptococcus mutans, the bacterium most commonly associated with tooth decay, is abundant in rhamnose-glucose polysaccharides (RGP). While these structures are antigenically distinct to S. Mutans. Kovacs, C.
J.; Faustoferri, R. 2017-01-01 ABSTRACT Bacterial cell wall dynamics have been implicated as important determinants of cellular physiology, stress tolerance, and virulence. In Streptococcus mutans, the cell wall is composed primarily of a rhamnose-glucose polysaccharide (RGP) linked to the peptidoglycan.
Despite extensive studies describing its formation and composition, the potential roles for RGP in S. Mutans biology have not been well investigated. The present study characterizes the impact of RGP disruption as a result of the deletion of rgpF, the gene encoding a rhamnosyltransferase involved in the construction of the core polyrhamnose backbone of RGP.
The ΔrgpF mutant strain displayed an overall reduced fitness compared to the wild type, with heightened sensitivities to various stress-inducing culture conditions and an inability to tolerate acid challenge. The loss of rgpF caused a perturbation of membrane-associated functions known to be critical for aciduricity, a hallmark of S. Mutans acid tolerance. The proton gradient across the membrane was disrupted, and the ΔrgpF mutant strain was unable to induce activity of the F1Fo ATPase in cultures grown under low-pH conditions. Further, the virulence potential of S. Mutans was also drastically reduced following the deletion of rgpF.
The ΔrgpF mutant strain produced significantly less robust biofilms, indicating an impairment in its ability to adhere to hydroxyapatite surfaces. Additionally, the ΔrgpF mutant lost competitive fitness against oral peroxigenic streptococci, and it displayed significantly attenuated virulence in an in vivo Galleria mellonella infection model. Collectively, these results highlight a critical function of the RGP in the maintenance of overall stress tolerance and virulence traits in S. IMPORTANCE The cell wall of Streptococcus mutans, the bacterium most commonly associated with tooth decay, is abundant in rhamnose-glucose polysaccharides (RGP). While these structures are antigenically distinct to S.
Feng, Youjun; Cao, Min; Shi, Jie; Zhang, Huimin; Hu, Dan; Zhu, Jing; Zhang, Xianyun; Geng, Meiling; Zheng, Feng; Pan, Xiuzhen; Li, Xianfu; Hu, Fuquan; Tang, Jiaqi; Wang, Changjun 2012-01-01 NeuB, a sialic acid synthase catalyzes the last committed step of the de novo biosynthetic pathway of sialic acid, a major element of bacterial surface structure. Here we report a functional NeuB homologue of Streptococcus suis, a zoonotic agent, and systematically address its molecular and immunological role in bacterial virulence. Disruption of neuB led to thinner capsules and more susceptibility to pH, and cps2B inactivation resulted in complete absence of capsular polysaccharides.
These two mutants both exhibited increased adhesion and invasion to Hep-2 cells and improved sensibility to phagocytosis. Not only do they retain the capability of inducing the release of host pro-inflammatory cytokines, but also result in the faster secretion of IL-8. Easier cleaning up of the mutant strains in whole blood is consistent with virulence attenuation seen with experimental infections of both mice and SPF-piglets.
Therefore we concluded that altered architecture of S. Suis surface attenuates its virulence. PMID:23050094.
Locke, Jeffrey B; Colvin, Kelly M; Varki, Nissi; Vicknair, Mike R; Nizet, Victor; Buchanan, John T 2007-06-07 Streptococcus iniae is a leading pathogen of intensive aquaculture operations worldwide, although understanding of virulence mechanisms of this pathogen in fish is lacking. Iniae possesses a homolog of streptolysin S (SLS), a secreted, pore-forming cytotoxin that is a proven virulence factor in the human pathogen S.
Here we used allelic exchange mutagenesis of the structural gene for the S. Iniae SLS precursor (sagA) to examine the role of SLS in S. Iniae pathogenicity using in vitro and in vivo models. The isogenic Delta sagA mutant was less cytotoxic to fish blood cells and cultured epithelial cells, but comparable to wild-type (WT) S. Iniae in adherence/invasion of epithelial cell monolayers and resisting phagocytic killing by fish whole blood or macrophages. In a hybrid striped bass infection model, loss of SLS production led to marked virulence attenuation, as injection of the Delta sagA mutant at 1000x the WT lethal dose (LD80) produced only 10% mortality. The neutralization of SLS could represent a novel strategy for control of S.
Iniae infection in aquaculture. Makthal, Nishanth; Gavagan, Maire; Do, Hackwon Group A Streptococcus (GAS) is an exclusive human pathogen that causes significant disease burden. Global regulator RopB of GAS controls the expression of several major virulence factors including secreted protease SpeB during high cell density. However, the molecular mechanism for RopB-dependent speB expression remains unclear.
To understand the mechanism of transcription activation by RopB, we determined the crystal structure of the C-terminal domain of RopB. RopB-CTD has the TPR motif, a signature motif involved in protein-peptide interactions and shares significant structural homology with the quorum sensing RRNPP family regulators. Characterization of the high cell density-specific cell-free growth medium demonstrated themore » presence of a low molecular weight proteinaceous secreted factor that upregulates RopB-dependent speB expression. Together, these results suggest that RopB and its cognate peptide signals constitute an intercellular signalling machinery that controls the virulence gene expression in concert with population density. Structure-guided mutational analyses of RopB dimer interface demonstrated that single alanine substitutions at this critical interface significantly altered RopB-dependent speB expression and attenuated GAS virulence.
Finally, results presented here suggested that a properly aligned RopB dimer interface is important for GAS pathogenesis and highlighted the dimerization interactions as a plausible therapeutic target for the development of novel antimicrobials.« less.